This video describes what black carbon is, where is comes from, and how it contributes to sea ice melt and global warming.

The video offers a simple and easy-to-understand overview of climate change. It poses basic questions such as 'What is it?' and 'How will it effect us?' and effectively answers those questions.

This visualization is a website with an interactive calculator that allows for estimation of greenhouse gas production from croplands in the United States.

In this short video, host Dr. Ryan interviews graduate student Amy Steiker at the Institute of Arctic and Alpine Research about her research, using isotopes of nitrous oxide, connecting human activity to greenhouse gas emissions.

This is a series of NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images taken over a 10 year period, 2000-2010, showing the extent of deforestation in the State of Rondonia in western Brazil over that period of time.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance and greenhouse gases on the Earth System.

This narrated animation displays three separate graphs of carbon emissions by humans, atmospheric concentrations of CO2, and average global temperature as it has changed over the last 1000 years. The final slide overlays the three graphs to show how they all correspond.

This video features a number of different climate scientists describing the effects of the increasing amount of carbon dioxide on global climate and proposing a series of solutions to mitigate these effects. Video addresses health problems and other costs to humans associated with climate change.

In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.