This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

In this video, students learn that scientific evidence strongly suggests that different regions on Earth do not respond equally to increased temperatures. Ice-covered regions appear to be particularly sensitive to even small changes in global temperature. This video segment adapted from NASA's Goddard Space Flight Center details how global warming may already be responsible for a significant reduction in glacial ice, which may in turn have significant consequences for the planet.

In this visualization students can explore North American fossil fuel CO2 emissions at very fine space and time scales. The data is provided by the Vulcan emissions data project, a NASA/DOE funded effort under the North American Carbon Program (NACP).

This is a series of NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images taken over a 10 year period, 2000-2010, showing the extent of deforestation in the State of Rondonia in western Brazil over that period of time.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This is an interactive webtool that allows the user to choose a state or country and both assess how climate has changed over time and project what future changes are predicted to occur in a given area.

This video features residents of Shishmaref, Alaska, plus environmental journalist Elizabeth Kolbert and scientist John Holdren, exploring the human impacts of global climate change. The roles of teachers, scientists, policymakers, and concerned citizens in mitigating the changes are highlighted.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance and greenhouse gases on the Earth System.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

This narrated animation displays three separate graphs of carbon emissions by humans, atmospheric concentrations of CO2, and average global temperature as it has changed over the last 1000 years. The final slide overlays the three graphs to show how they all correspond.

Pages