This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere.

This web-based activity tackles the broad reasons for undertaking ocean exploration - studying the interconnected issues of climate change, ocean health, energy and human health. Students examine the types of technology ocean scientists use to collect important data.

In this activity, students are introduced to tree rings by examining a cross section of a tree, also known as a 'tree cookie.' They discover how tree age can be determined by studying the rings and how ring thickness can be used to deduce times of optimal growing conditions. Next, they investigate simulated tree rings applying the scientific method to explore how climatic conditions varied over time.

In this activity, students review techniques used by scientists as they analyze a 50-year temperature time series dataset. The exercise helps students understand that data typically has considerable variability from year to year and to predict trends, one needs to consider long-term data.

This activity introduces students to stratigraphic correlation and the dating of geologic materials, using coastal sediment cores that preserve a record of past hurricane activity.

In this activity from NOAA's Okeanos Explorer Education Materials Collection, learners investigate how methane hydrates might have been involved with the Cambrian explosion.

This activity in a case study format explores ice loss from the Greenland ice sheet by way of outlet glaciers that flow into the ocean. Students do basic calculations and learn about data trends, rates of change, uncertainty, and predictions.

In this activity, students explore how the timing of color change and leaf drop of New England's deciduous trees is changing.

In this learning activity, students analyze an actual dataset of the influence of temperature on tree growth. They use mathematical and statistical concepts like slope equations and lines of best fit to determine the relationship. They are then asked to make predictions about future tree growth under different greenhouse gas emissions, interpreting data from climate models to make these predictions.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

Pages