This sequence of activities using real-world data to explain the importance of coral reefs and the relationship of coral reef health to the surrounding environment. Unit includes five activities.

In this exercise learners use statistics (T-test using Excel) to analyze an authentic dataset from Lake Mendota in Madison, WI that spans the last 150 years to explore ice on/ice off dates. In addition, students are asked to investigate the IPCC Likelihood Scale and apply it to their statistical results.

This resource is a website that is a self-contained, multi-part introduction to how climate models work. The materials include videos and animations about understanding, constructing and applying climate models.

This activity uses geophysical and geochemical data to determine climate in Central America during the recent past and to explore the link between climate (wet periods and drought) and population growth/demise among the Maya. Students use ocean drilling data to interpret climate and to consider the influence of climate on the Mayan civilization.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost through an important sink and source of greenhouse gas (methane), about which most students living in lower latitudes know little.

In this jigsaw activity, students explore meteorological data collected from Eureka, Canada to try to decide when would be the best time for an Arctic visit.

Students examine data from Mauna Loa to learn about CO2 in the atmosphere. The students also examine how atmospheric CO2 changes through the seasonal cycle, by location on Earth, and over about 40 years and more specifically over 15 years. Students graph data in both the Northern and Southern Hemisphere and draw conclusions about hemispherical differences in CO2 release and uptake.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

Pages