This is the first of nine lessons in the Visualizing and Understanding the Science of Climate Change website. This lesson is an introduction to Earth's climate and covers key principles regarding Earth's unique climate, atmosphere, and regional and temporal climate differences.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This activity uses geophysical and geochemical data to determine climate in Central America during the recent past and to explore the link between climate (wet periods and drought) and population growth/demise among the Maya. Students use ocean drilling data to interpret climate and to consider the influence of climate on the Mayan civilization.

In this activity, students examine pictures of pollen grains representing several species that show the structural differences that scientists use for identification. Students analyze model soil samples with material mixed in to represent pollen grains. They then determine the type and amount of 'pollen' in the samples and, using information provided to them, determine the type of vegetation and age of their samples. Finally, they make some conclusions about the likely climate at the time the pollen was shed.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns. Students use data from sediment cores to understand annual sediment deposition and how it relates to weather and climate patterns.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

In this activity students work with data to analyze local and global temperature anomaly data to look for warming trends. The activity focuses on the Great Lakes area.