In this activity, students review techniques used by scientists, as they analyze a 50-year temperature time series dataset. The exercise helps students understand that data typically has considerable variability from year to year and to predict trends or forecast the future, there is value in long-term data collection.

In this lesson, students examine and interpret varied observational datasets and are asked to determine whether the data supports or does not support the statement: climate change is occurring in Colorado.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

This is a global land surface air temperature graphic showing four overlapping time-series datasets based on records from 1961 - 2000.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

For this lesson, the guiding Concept Question is: What is climate change and how does climate relate to greenhouse gas concentrations over time? This activity is the second lesson in a nine-lesson module 'Visualizing and Understanding the Science of Climate Change' produced by the International Year of Chemistry project (2011).

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This is the first of nine lessons in the "Visualizing and Understanding the Science of Climate Change" website. This lesson is an introduction to Earth's climate and covers key principles regarding Earth's unique climate, atmosphere, and regional and temporal climate differences.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

This is a lab about evidence for past climate change as captured in ice sheets of Greenland and Antarctica. Students investigate climate changes going back thousands of years by graphing and analyzing ice core data from both Greenland and Antarctica. They use information about natural and human-caused changes in the atmosphere to formulate predictions about Earth's climate.