In this activity, students create graphs of real temperature data to investigate climate trends by analyzing the global temperature record from 1867 to the present. Long-term trends and shorter-term fluctuations are both evaluated. The data is examined for evidence of the impact of natural and anthropogenic climate forcing mechanisms on the global surface temperature variability. Students are prompted to determine the difficulties scientists face in using this data to make climate predictions.

In this activity, students consider Greenland reflectivity changes from 2000 to 2012 and what albedo anomalies may indicate about how the Greenland ice sheet is changing in a case study format.

In this activity, students research changes to the environment in the Arctic/Bering Sea over time using oral and photographic histories. Developed for Alaska Native students, this activity can be customized for other regions.

In this activity, students examine climate variability in the North Atlantic associated with the North Atlantic Oscillation (NOA) in a case study format.

In this exercise learners use statistics (T-test using Excel) to analyze an authentic dataset from Lake Mendota in Madison, WI that spans the last 150 years to explore ice on/ice off dates. In addition, students are asked to investigate the IPCC Likelihood Scale and apply it to their statistical results.

Two graphs from the NASA Climate website illustrate the change in global surface temperature relative to 1951-1980 average temperatures. The NASA plot is annotated with temperature-impacting historic events, which nicely connect an otherwise challenging graphic to real-world events.

This is an interactive graph that involves records of ice cover in two Wisconsin lakes - Lake Mendota and Lake Monona - from 1855-2010.

This is a sequence of 5 classroom activities focusing on the El NiÃo climate variability. The activities increase in complexity and student-directedness. The focus of the activities is on accessing and manipulating real data to help students understand El NiÃo as an interaction of Earth systems.

In this activity, students are introduced to tree rings by examining a cross section of a tree, also known as a 'tree cookie.' They discover how tree age can be determined by studying the rings and how ring thickness can be used to deduce times of optimal growing conditions. Next, they investigate simulated tree rings applying the scientific method to explore how climatic conditions varied over time.

This short video clip summarizes NOAA's annual State of the Climate Report for 2009. It presents a comprehensive summary of Earth's climate in 2009 and establishes the last decade as the warmest on record. Reduced extent of Arctic sea ice, glacier volume, and snow cover reflect the effects of rising global temperature.