This activity from NOAA Earth System Research Laboratory introduces students to the current scientific understanding of the greenhouse effect and the carbon cycle. The activity leads them through several interactive tasks investigating recent trends in atmospheric carbon dioxide. Students analyze scientific data and use scientific reasoning to determine the causes responsible for these recent trends. By studying carbon cycle science in a visual and interactive manner, the activity provides students with a conceptual framework with which to address the challenges of a changing climate.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

This activity utilizes labs, online resources, and student ideas to build an understanding of polar climates, how changes in polar oceans can affect coastal climates, and how changes in polar regions affect climates elsewhere on Earth.

In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost through an important sink and source of greenhouse gas (methane), about which most students living in lower latitudes know little.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

In this jigsaw activity, students explore meteorological data collected from Eureka, Canada to try to decide when would be the best time for an Arctic visit.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

In this activity, students create models of Arctic albedo. They use satellite imagery, modeling, and the NASA Climate Time Machine to study albedo.

Pages