An activity focusing on black carbon. This activity explores the impacts of the use of wood, dung, and charcoal for fuel, all which generate black carbon, in developing countries.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

In this activity students download satellite images displaying land surface temperature, snow cover, and reflected short wave radiation data from the NASA Earth Observation (NEO) Web site. They then explore and animate these images using the free tool ImageJ and utilize the Web-based analysis tools built into NEO to observe, graph, and analyze the relationships among these three variables.

This video contains a visualization and explanation of the Arctic sea ice and how it has changed over the 25 years. In September 2012, the National Snow and Ice Data Center recorded the lowest extent of Arctic sea ice. The video discusses the climate importance of ice thickness and reflective properties.

This interactive visualization adapted from NASA and the U.S. Geological Survey illustrates the concept of albedo, which is the measure of how much solar radiation is reflected from Earth's surface.

This video provides an overview of changes happening in the Arctic.

This video addresses two ways in which black carbon contributes to global warming - when in the atmosphere, it absorbs sunlight and generates heat, warming the air; when deposited on snow and ice, it changes the albedo of the surface. The video is effective in communicating about a problem frequently underrepresented in discussions of climate change and also public health.

In this activity, students consider Greenland reflectivity changes from 2000 to 2012 and what albedo anomalies may indicate about how the Greenland ice sheet is changing in a case study format.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

This qualitative graphic illustrates the various factors that affect the amount of solar radiation hitting or being absorbed by Earth's surface such as aerosols, clouds, and albedo.