This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon reservoirs and the movement of carbon between reservoirs.

This is a polar map of permafrost extent in the Northern Hemisphere. A sidebar explains how permafrost, as it forms and later thaws, serves as both a sink and source for carbon to the atmosphere. Related multimedia is a slideshow of permafrost scientists from U. of Alaska, Fairbanks, collecting permafrost data in the field.

In this worksheet-based activity, students review global visualizations of incoming sunlight and surface temperature and discuss seasonal change. Students use the visualizations to support inquiry on the differences in seasonal change in the Northern and Southern Hemispheres and how land and water absorb and release heat differently. The activity culminates in an argument about why one hemisphere experiences warmer summers although it receives less total solar energy.

This video focuses on the conifer forest in Alaska to explore the carbon cycle and how the forest responds to rising atmospheric carbon dioxide. Topics addressed in the video include wildfires, reflectivity, and the role of permafrost in the global carbon cycle.

In this jigsaw activity, students explore meteorological data collected from Eureka, Canada to try to decide when would be the best time for an Arctic visit.

This short video discusses where carbon dioxide, the gas that is mainly responsible for warming up our planet and changing the climate, comes from. It discusses how the rise in atmospheric carbon dioxide comes directly from the burning of fossil fuels and indirectly from the human need for energy.

In this short, hands-on activity, students build simple molecular models of 4 atmospheric gases (O2, N2, C02, and methane), compare their resonant frequencies, and make the connection between resonant frequency and the gas's ability to absorb infrared radiation.

This video discusses the differences between climate and weather by defining and presenting examples of each. When presenting examples of weather, the video focuses on severe events and how meteorologists predict and study the weather using measurement, satellites, and radar. The climate focus is primarily on an overview of climate zones.

In this activity, students will practice the steps involved in a scientific investigation as they learn why ice formations on land (and not those on water) will cause a rise in sea level upon melting. This is a discovery lesson in ice and water density and displacement of water by ice floating on the surface as it relates to global climate change.

This activity teaches students about the albedo of surfaces and how it relates to the ice-albedo feedback effect. During an experiment, students observe the albedo of two different colored surfaces by measuring the temperature change of a white and black surface under a lamp.

Pages