This activity introduces students to visualization capabilities available through NASA's Earth Observatory, global map collection, NASA NEO and ImageJ. Using these tools, students build several animations of satellite data that illustrate carbon pathways through the Earth system.

In this video, students learn that scientific evidence strongly suggests that different regions on Earth do not respond equally to increased temperatures. Ice-covered regions appear to be particularly sensitive to even small changes in global temperature. This video segment adapted from NASA's Goddard Space Flight Center details how global warming may already be responsible for a significant reduction in glacial ice, which may in turn have significant consequences for the planet.

This video focuses on the conifer forest in Alaska to explore the carbon cycle and how the forest responds to rising atmospheric carbon dioxide. Topics addressed in the video include wildfires, reflectivity, and the role of permafrost in the global carbon cycle.

An interactive simulation that allows the user to adjust mountain snowfall and temperature to see the glacier grow and shrink in response.

In this activity, students learn about the relationship between greenhouse gases and global warming through a simple teacher demo or hands-on lab activity. Everyday materials are used: beakers, baking soda, vinegar, candle, thermometers, heat source such as a goose-necked lamp, etc. Students shine a light onto three thermometers: a control, an upside down beaker w/ a thermometer and air, and a beaker in which CO2 had been poured.

In this activity, students learn the basics of photosynthesis and respiration within the carbon cycle. Students are assigned to be different atoms or energy and interact with each other by linking together to form molecules and absorb or release energy.

In this activity, students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). While becoming more familiar with the physical processes that made Earth's early climate so different from that of today, they also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

This video follows Bermuda scientists into the field as they collect data that documents a warming trend in ocean temperatures. BIOS Director Tony Knapp discusses some of the impact of warming temperatures on sea levels, storms, and marine ecosystems.

In this activity for undergraduate students, learners build a highly simplified computer model of thermohaline circulation (THC) in the North Atlantic Ocean and conduct a set of simulation experiments to understand the complex dynamics inherent in this simple model.

This video, from Yale Climate Connections, explores the 2014 melting of the West Antarctic ice sheet that captured headlines. Interviews, animations, and news broadcasts explore what the melting meant for both the future of some of the Antarctic glaciers and sea level rise, and informs the viewer how seafloor terrain influences the speed of ice sheet melt.

Pages