This 3-activity sequence addresses the question: "To what extent should coastal communities build or rebuild?" The activity uses social science and geoscience data to prepare an evidence-based response to the question, in targeted US coastal communities.

In this video segment, a team of scientists seeks evidence to support their hypothesis that atmospheric warming may cause water to form beneath the West Antarctic ice sheet. This water causes ice streams to flow much more quickly than the rest of the ice sheet, which has important implications for sea level rise.

This is the seventh of nine lessons in the 'Visualizing and Understanding the Science of Climate Change' website. This lesson addresses climate feedback loops and how these loops help drive and regulate Earth's unique climate system.

In this 3-part lab activity, students investigate how carbon moves through the global carbon cycle and study the effects of specific feedback loops on the carbon cycle.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

In this video, students learn that scientific evidence strongly suggests that different regions on Earth do not respond equally to increased temperatures. Ice-covered regions appear to be particularly sensitive to even small changes in global temperature. This video segment adapted from NASA's Goddard Space Flight Center details how global warming may already be responsible for a significant reduction in glacial ice, which may in turn have significant consequences for the planet.

An interactive simulation that allows the user to adjust mountain snowfall and temperature to see the glacier grow and shrink in response.

Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance, and greenhouse gases on the Earth System.

This simulation was created by a student for students based on the Gaia Theory using the simulation of Daisyworld. Students will learn the concept of albedo and be able to discuss implications of changes in the system.

Pages