This video, from Yale Climate Connections, explores the 2014 melting of the West Antarctic ice sheet that captured headlines. Interviews, animations, and news broadcasts explore what the melting meant for both the future of some of the Antarctic glaciers and sea level rise, and informs the viewer how seafloor terrain influences the speed of ice sheet melt.

This video is about Greenland's ice sheet, accompanied by computer models of the same, to show how the ice is melting, where the meltwater is going, and what it is doing both on the surface and beneath the ice.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

In this jigsaw activity, students explore meteorological data collected from Eureka, Canada to try to decide when would be the best time for an Arctic visit.

In this video segment, a team of scientists seeks evidence to support their hypothesis that atmospheric warming may cause water to form beneath the West Antarctic ice sheet. This water causes ice streams to flow much more quickly than the rest of the ice sheet, which has important implications for sea level rise.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

This video contains a visualization and explanation of the Arctic sea ice and how it has changed over the 25 years. In September 2012, the National Snow and Ice Data Center recorded the lowest extent of Arctic sea ice. The video discusses the climate importance of ice thickness and reflective properties.

In this activity for undergraduate students, learners build a highly simplified computer model of thermohaline circulation (THC) in the North Atlantic Ocean and conduct a set of simulation experiments to understand the complex dynamics inherent in this simple model.

This is a series of 5 guided-inquiry activities that examine data and models that climate scientists use to attempt to answer the question of Earth's future climate.