This visualization is an animation showing the distribution of black carbon and sulfate aerosols in the Earth's atmosphere from 01/31/2007 to 02/04/2007 and clearly shows larger amounts of aerosols and black carbon in the atmosphere above heavily populated areas.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

In this Earth Exploration Toolbook chapter, students select, explore, and analyze satellite imagery. They do so in the context of a case study of the origins of atmospheric carbon monoxide and aerosols, tiny solid airborne particles such as smoke from forest fires and dust from desert wind storms. They use the software tool ImageJ to animate a year of monthly images of aerosol data and then compare the animation to one created for monthly images of carbon monoxide data. Students select, explore, and analyze satellite imagery using NASA Earth Observatory (NEO) satellite data and NEO Image Composite Explorer (ICE) tool to investigate seasonal and geographic patterns and variations in concentration of CO and aerosols in the atmosphere.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

This video addresses two ways in which black carbon contributes to global warming. When in the atmosphere, it absorbs sunlight and generates heat, warming the air. When deposited on snow and ice, black carbon changes the albedo of the surface. The video is effective in communicating about a problem frequently underrepresented in discussions of climate change and also public health.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

This qualitative graphic illustrates the various factors that affect the amount of solar radiation hitting or being absorbed by Earth's surface such as aerosols, clouds, and albedo.

This video describes what black carbon is, where is comes from, and how it contributes to sea ice melt and global warming.

This image depicts a representative subset of the atmospheric processes related to aerosol lifecycles, cloud lifecycles, and aerosol-cloud-precipitation interactions that must be understood to improve future climate predictions.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance, and greenhouse gases on the Earth System.