In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon reservoirs and the movement of carbon between reservoirs.

This hands-on activity is a kinesthetic game illustrating the dynamics of the carbon cycle. Acting as carbon atoms, students travel from one carbon reservoir to another. At each reservoir they determine, by rolling dice, how long they stay in the reservoir or how likely it is that they will move to another carbon reservoir.

In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

In this activity, students explore the role of combustion in the carbon cycle. They learn that carbon flows among reservoirs on Earth through processes such as respiration, photosynthesis, combustion, and decomposition, and that combustion of fossil fuels is causing an imbalance. This activity is one in a series of 9 activities.