This is a polar map of permafrost extent in the Northern Hemisphere. A sidebar explains how permafrost, as it forms and later thaws, serves as both a sink and source for carbon to the atmosphere. Related multimedia is a slideshow of permafrost scientists from U. of Alaska, Fairbanks, collecting permafrost data in the field.

In this visualization, students can explore North American fossil fuel CO2 emissions at very fine resolutions of both space and time. The data is provided by the Vulcan emissions data project, a NASA/DOE funded effort under the North American Carbon Program.

This PBS video shows how Klaus Lackner, a geophysicist at Columbia University, is trying to tackle the problem of rising atmospheric CO2 levels by using an idea inspired by his daughter's 8th-grade science fair project. The video examines the idea of pulling CO2 out of the atmosphere via a passive chemical process.

A simplified representation of the terrestrial carbon cycle side by side with the ocean carbon cycle. Fluxes and reservoirs expressed in gigatons are included.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

This interactive graphic shows the different components of the ocean biological pump, i.e., how carbon in the form of either plankton or particles moves into the ocean's depths. The diagram illustrates the processes at the surface, 0-100 meters, 100-500 meters, and below 500 meters.

This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon reservoirs and the movement of carbon between reservoirs.

Interactive visualization that provides a basic overview of the Earth's carbon reservoirs and amount of carbon stored in each, CO2 transport among atmosphere, hydrosphere, geosphere, and biosphere, and a graph comparing global temp (deg C) and atmospheric CO2 levels (ppm) over the past 1000 years.

This is an interactive visualization of the Carbon Cycle, through short-term and long-term processes.

In this 3-part lab activity, students investigate how carbon moves through the global carbon cycle and study the effects of specific feedback loops on the carbon cycle.