This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

In this worksheet-based activity, students review global visualizations of incoming sunlight and surface temperature and discuss seasonal change. Students use the visualizations to support inquiry on the differences in seasonal change in the Northern and Southern Hemispheres and how land and water absorb and release heat differently. The activity culminates in an argument about why one hemisphere experiences warmer summers although it receives less total solar energy.

This lesson is a lab in which students use thermometers, white and dark paper, and lamps to measure differences in albedo between the light and dark materials. Connections are made to albedo in Antarctica.

In this activity, students assume the role of a team of architects that has been commissioned to build a solar house containing both active and passive solar components. First, they must design the house and then build a model. The model is tested to determine how well it utilizes solar energy.

In this activity, students use a physical model to learn the basics of photosynthesis and respiration within the carbon cycle.

This activity introduces students to the process of converting sunlight into electricity through the use of photovoltaics (solar cells). Students complete a reading passage with questions and an inquiry lab using small photovoltaic cells.

This interactive activity, in applet form, guides students through the motion of the sun and how they relate to seasons.

Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

This activity supports educators in the use of the activities that accompany the GLOBE Program's Earth System Poster 'Exploring Connections in Year 2007'. Students identify global patterns and connections in environmental data that include soil moisture, insolation, surface temperature, cloud fraction, precipitation, world topography/bathymetry, aerosol optical thickness, and biosphere (from different times of the year) with the goal of recognizing patterns and trends in global data sets.