This short video uses animated imagery from satellite remote sensing systems to illustrate that Earth is a complex, evolving body characterized by ceaseless change. Adapted from NASA, this visualization helps explain why understanding Earth as an integrated system of components and processes is essential to science education.

This visualization graphically displays temperature and CO2 concentration in the atmosphere as derived from ice core data from 400,000 years ago to 1950. The data originates from UNEP GRID Arendal's graphic library of CO2 levels from Vostok ice core.

The purpose of this activity is to identify global patterns and connections in environmental data contained in the GLOBE Earth Systems Poster, to connect observations made within the Earth Systems Poster to data and information at the National Snow and Ice Data Center, and to understand the connections between solar energy and changes at the poles, including feedback related to albedo.

This video introduces the concept of daylighting - the use of windows or skylights for natural lighting and temperature regulation - and how it is a building strategy that can save operating costs for homeowners and businesses.

This animated video outlines Earth's energy. The video presents a progression from identifying the different energy systems to the differences between external and internal energy sources and how that energy is cycled and used.

In this short video, atmospheric scientist Scott Denning gives a candid and entertaining explanation of how greenhouse gases in Earth's atmosphere warm our planet.

This figure shows the various astronomic cycles that influence long-term global climate cycles (Milankovitch cycles), plotted on the same time scale for easy comparison.

In this activity, students calculate electricity use by state and determine, using Google Earth, how much land would be required to replace all sources of electricity with solar panels.

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

In this 6-part activity, students learn about climate change during the Cenozoic and the abrupt changes at the Cretaceous/Paleogene boundary (65.5 million years ago), the Eocene/Oligocene boundary (33.9 million years ago), and the Paleocene/Eocene boundary (55.8 million years ago).

Pages