In this activity, students will determine the environmental effects of existing cars and a fleet consisting of their dream cars. They compute how many tons of heat-trapping gases are produced each year, how much it costs to fuel the cars, and related information. Then, students research and prepare a report about greener transportation choices.

In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.

This video introduces the concept of daylighting - the use of windows or skylights for natural lighting and temperature regulation - and how it is one building strategy that can save operating costs for homeowners and businesses.

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

This short investigation from Carbo Europe explores how temperature relates to the solubility of carbon dioxide in water.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

This short video surveys the different current and potential sources of energy - both non-renewable and renewable. It provides some discussion of the pros and cons of the different sources and explains how they are used to produce energy that people can use.

In this activity, students chart temperature changes over time in Antarctica's paleoclimate history by reading rock cores. Students use their data to create an interactive display illustrating how Antarctica's climate timeline can be interpreted from ANDRILL rock cores.

This video segment from 'Earth: The Operators' Manual' explores how we know that today's increased levels of CO2 are caused by humans burning fossil fuels and not by some natural process, such as volcanic out-gassing. Climate scientist Richard Alley provides a detailed step-by-step explanation that examines the physics and chemistry of different "flavors" or isotopes of carbon in Earth's atmosphere.

In this activity, students explore energy production and consumption by contrasting regional energy production in five different US regions.