Video presents a broad overview of what (NASA) satellites can tell us about how climate change is affecting oceans.

This interactive visualization from the NASA Earth Observatory website compares Arctic sea ice minimum extent from 1984 to that of 2012.

In this activity, students examine the energy required to make a cheeseburger, calculate its associated carbon footprint, and discuss the carbon emissions related to burger production. The activity is geared toward Canadian students but can be customized to the consumption patterns and carbon footprint of American students since the resource references the amount of burgers consumed by Americans in addition to Canadians.

This video is simple in its appearance, but it contains a wealth of relevant information about global climate models.

This climate change interactive modeling simulation simulates the interactions among different sets of variables related to climate change. This is a facilitated guided-inquiry exercise.

This interactive displays how climate variables are changing over time (temperature, CO2, Arctic sea ice, solar flux, etc.) in graphical form. Students can examine data over the last 20 years or archived data.

This video describes how the normal thousands-of-years-long balance of new ice creation and melting due to ocean currents has been disrupted recently by warmer ocean currents. As a result, glacier tongues that overhang the interface between ice and ocean are breaking off and falling into the ocean.

In this activity students download satellite images displaying land surface temperature, snow cover, and reflected short wave radiation data from the NASA Earth Observation (NEO) Web site. They then explore and animate these images using the free tool ImageJ and utilize the Web-based analysis tools built into NEO to observe, graph, and analyze the relationships among these three variables.

This series of informative graphics provide a regional overview of US energy resources.

Students calculate the cost of the energy used to operate a common three-bulb light fixture. They then compare the costs and amount of CO2 produced for similar incandescent and compact fluorescent light bulbs. Students also do a short laboratory activity to visualize why two bulbs, which give off the same amount of light, use different amounts of electrical energy.

Pages