In this activity, students utilize a set of photographs and a 30 minute video on weather to investigate extreme weather events. They are posed with a series of questions that ask them to identify conditions predictive of these events, and record them on a worksheet. Climate and weather concepts defined.

This video describes what black carbon is, where is comes from, and how it contributes to sea ice melt and global warming.

This is an animated interactive that displays, on a Global Viewer, NOAA datasets on hazards, ocean, and climate. User can visualize data on phenomena such as hurricanes, humpback whale migrations, carbon tracker, sea ice extent, IPCC scenarios on global warming.

This animation illustrates how the hardiness zones for plants have changed between 1990 and 2006 based on an extensive updating of U.S. Hardiness Zones using data from 5,000 National Climatic Data Center cooperative stations across the continental United States.

This activity is a hands-on guided inquiry activity designed to highlight the role of an ice shelf on slowing the movement of continental ice sheets in Antarctica. Students build a model of Antarctica and both continental glaciers and ice shelves using paper models of the land and slime for glaciers and ice. Students use their model to explore the impact of recent and potential ice shelf melting and break-up.

This video reviews how increasing temperatures in the Arctic are affecting the path of the jet stream, the severity of storms, and the length of individual weather events (rain, storms, drought).

In this classroom activity, students measure the energy use of various appliances and electronics and calculate how much carbon dioxide (CO2) is released to produce that energy.

This video is one of a seven, Climate Change: Lines of Evidence series, produced by the the National Research Council. It outlines and explains what evidence currently exists in support of humans playing a role in contributing to the rise in atmospheric carbon dioxide levels.

This as a 2-part activity in which students study the properties of CO2 in a lab and then use Web resources to research different types of carbon capture. A video lecture accompanies the activity.

In this activity, students distinguish between direct and indirectly transmitted diseases and participate in a group game to simulate the spread of vector-borne diseases. They then research a particular pathogenic disease to learn how global warming and biodiversity loss can affect disease transmission.