This brief, hands-on activity illustrates the different heating capacities of soil and water in order to understand why places near the sea have a more moderate climate than those inland.

This video features three faculty from the University of Colorado, Boulder (Beth Osnes, Max Boykoff and James White) and CU students taking action with others to help mitigate climate change at a local level - making personal decisions about energy use and family size, educating the university community about actions that individuals can take, and developing materials to build sustainable housing.

This activity students through the ways scientists monitor changes in Earth's glaciers, ice caps, and ice sheets. Students investigate about glacier locations, glacial movement, and impacts of climate change on glaciers depending on the depth of research. It is linked to 2009 PBS Nova program entitled Extreme Ice.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options: 1) Business As Usual, 2) March 2009 Country Proposals, 3) Flatten CO2 emissions by 2025, 4) 29% below 2009 levels by 2040, 5) 80% reduction of global fossil fuel plus a 90% reduction in land use emissions by 2050, and 6) 95 reduction of CO2 emissions by 2020). Based on the more complex C-ROADS simulator.

In this 3-part lab activity, students investigate how carbon moves through the global carbon cycle and study the effects of specific feedback loops on the carbon cycle.

This activity uses a mix of multimedia resources and hands-on activities to support a storyline of investigation into melting sea ice. The lesson begins with a group viewing of a video designed to get students to consider both the local and global effects of climate change. The class then divides into small groups for inquiry activities on related topics followed by a presentation of the findings to the entire class. A final class discussion reveals a more complex understanding of both the local and global impacts of melting sea ice.

This interactive shows the impact of a changing climate on maple syrup sap production. Students can explore the changes in production under two different emissions scenarios.

This activity engages students in learning about ways to become energy efficient consumers. Students examine how different countries and regions around the world use energy over time, as reflected in night light levels. They then track their own energy use, identify ways to reduce their individual energy consumption, and explore how community choices impact the carbon footprint.

This is an interactive map of California and the Sierra Nevada mountains, showing projected variations in water stored in snowpack, from 1950 to 2090, assuming low or high emission scenarios over that period of time. Interactive can be adjusted to show different months of the year and various climate models, graphed by site.

In this activity, students examine images of alpine glaciers to develop an understanding of how glaciers respond to climate change. They record, discuss, and interpret their observations. They consider explanations for changes in the size and position of glaciers from around the world. They develop an understanding that the melting (retreat) of glaciers is occurring simultaneously on different continents around the world, and, thus, they represent evidence of global climate change.