In this EarthLabs activity, learners explore the concepts of coral bleaching, bleaching hot spots and degree-heating weeks. Using data products from NOAA's Coral Reef Watch, students identify bleaching hot spots and degree-heating weeks around the globe as well as in the Florida Keys' Sombrero Reef to determine the impact higher-than-normal sea surface temperatures have on coral reefs.

Students perform a lab to explore how the color of materials at the Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark colored materials become hotter.

This video explains what is involved in conducting a home energy audit. Such an audit evaluates how much energy you use in your house and suggests the most cost-effective measures you can take to improve the energy efficiency of your home. The outcomes are the use of less energy resulting in cost-savings on your energy bills.

In this investigation learners research the effects of melting sea ice in the Bering Sea Ecosystem. They create research proposals to earn a place on the scientific research vessel Healy and present their findings and proposals to a Research Board committee.

This is a sequence of 5 classroom activities focusing on the El NiÃo climate variability. The activities increase in complexity and student-directedness. The focus of the activities is on accessing and manipulating real data to help students understand El NiÃo as an interaction of Earth systems.

In this activity, students use NASA satellite data to explore the seasonal changes in sea surface temperatures of the Gulf Stream. Students use NASA's Live Active Server (LAS) to generate data of sea surface temperatures in the Gulf Stream, which they then graph and analyze.

In this video, adapted from KUAC-TV and the Geophysical Institute at the University of Alaska, Fairbanks, viewers learn how one-celled organisms in permafrost may be contributing to greenhouse gas levels and global warming.

This resource is a website that is a self-contained, multi-part introduction to how climate models work. The materials include videos and animations about understanding, constructing and applying climate models.

This long classroom activity introduces students to a climate modeling software. Students visualize how temperature and snow coverage might change over the next 100 years. They run a 'climate simulation' to establish a baseline for comparison, do a 'experimental' simulation and compare the results. Students will then choose a region of their own interest to explore and compare the results with those documented in the IPCC impact reports. Students will gain a greater understanding and appreciation of the process and power of climate modeling.

A computer animation on the reason for the seasons. Voice-over describes the motion of Earth around the sun to show how the sun's light impacts the tilted Earth at different times of the year, causing seasonal changes.

Pages