This video is part two of a seven-part National Academies series, Climate Change: Lines of Evidence. The video outlines, with the use of recent research and historical data, how we know that the Earth is warming.

In this JAVA-based interactive modeling activity, students are introduced to the concepts of mass balance, flow rates, and equilibrium using a simple water bucket model. Students can vary flow rate into the bucket, initial water level in the bucket, and residence time of water in the bucket. After running the model, the bucket's water level as a function of time is presented graphically and in tabular form.

In this video, students learn that the Exxon Valdez oil spill in Alaska in 1989 was not the sole cause of the decline of species in the local ecosystem. Rather, an explanation is posited for why some animal populations were already in decline when the spill occurred. Many of these animals share a common food: the sand lance, a fish whose populations have shrunk with the steady rise in ocean temperature that began in the late 1970s.

Two short, narrated animations about carbon dioxide and Earth's temperature are presented on this webpage. The first animation shows the rise in atmospheric CO2 levels, human carbon emissions, and global temperature rise of the past 1,000 years; the second shows changes in the level of CO2 from 800,000 years ago to the present.

In this activity for undergraduates, students explore the CLIMAP (Climate: Long-Range Investigation, Mapping and Prediction) model results for differences between the modern and the Last Glacial Maximum (LGM) and discover the how climate and vegetation may have changed in different regions of the Earth based on scientific data.

These flow charts show carbon dioxide emissions for each state, the District of Columbia and the entire United States. Emissions are distinguished by energy source and end use.

The video offers a simple and easy-to-understand overview of climate change. It poses basic questions such as 'What is it?' and 'How will it effect us?' and effectively answers those questions.

This graph, based on key ice core data sets and recent monitoring programs, shows the variations in concentration of carbon dioxide (CO2) in the atmosphere during the last 400,000 years.

This video segment highlights research that supports the idea that warmer oceans generate and sustain more intense hurricanes.

In this activity, students make a model sea floor sediment core using two types of buttons to represent fossil diatoms. They then compare the numbers of diatom fossils in the sediment at different depths to determine whether the seas were free of ice while the diatoms were alive.

Pages