This series of five activities about ocean acidification incorporates real data from NOAA. The activities are organized as a pathway, with five levels increasing in sophistication, and different data-based inquiry activities.

A collection of repeat photography of glaciers from the National Snow and Ice Data Center (NSIDC). The photos are taken years apart at or near the same location, illustrating how dramatically glacier positions can change even over a relatively short period in geological time: 60 to 100 years. Background essay and discussion questions are included.

This video profiles the Arctic Inuit community of Sachs Harbour and its collaboration with scientists studying climate change. Changes in the land, sea, and animals are readily apparent to the residents of Sachs Harbourâmany of whom hunt, trap, and fishâbecause of their long-standing and intimate connection with their ecosystem. Scientists from a climate change study project interview the residents and record their observations. The scientists can use these firsthand accounts along with their own collected data to deepen their understanding of climate change in the polar region.

This short video discusses where carbon dioxide, the gas that is mainly responsible for warming up our planet and changing the climate, comes from. It discusses how the rise in atmospheric carbon dioxide comes directly from the burning of fossil fuels and indirectly from the human need for energy.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

This short animation helps demonstrate the difference between climate and weather by using the analogy of a leashed dog walking with a man.

In this activity, students collect data and analyze the cost of using energy in their homes and investigate one method (switching to compact fluorescent light bulbs) of reducing energy use. This activity provides educators and students with the means to connect 'energy use consequences' and 'climate change causes.' Through examining home energy use and calculating both pollution caused by the generation of electricity and potential savings, students can internalize these issues and share information with their families.

In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

In this activity, students conduct a life cycle assessment of energy used and produced in ethanol production, and a life cycle assessment of carbon dioxide used and produced in ethanol production.

These graphs show carbon dioxide measurements at the Mauna Loa Observatory, Hawaii. The graphs display recent measurements as well as historical long term measurements. The related website summarizes in graphs the recent monthly CO2, the full CO2 Record, the annual Mean CO2 Growth Rate, and gives links to detailed CO2 data for this location, which is one of the most important CO2 tracking sites in the world.

Pages