This is an interactive map that illustrates the scale of potential flooding in Alabama, Mississippi, and Florida due to projected sea level rise. It is a collaborative project of NOAA Sea Grant Consortium and U.S.G.S. It is a pilot project, so there is some possibility that the resource may not be maintained over time.

In this activity, students play the role of energy consultants to a CEO, assessing and documenting the feasibility, cost, and environmental impact of installing solar power on 4 company facilities with the same design but in different geographical locations.

This activity offers an introduction to working with Geographic Information Systems (GIS) by using field data on the Urban Heat Island Effect that was collected by students. The field data is entered in the GIS, displayed in a map, and analyzed.

This activity challenges students to try and meet the world's projected energy demand over the next century, decade by decade, by manipulating a menu of available energy sources in the online Energy lab simulator all while keeping atmospheric CO2 under a target 550ppm.

This video on phenology of plants and bees discusses the MODIS satellite finding that springtime greening is happening one half-day earlier each year and correlates this to bee pollination field studies.

In this activity, students work through the process of evaluating the feasibility of photovoltaic solar power in 4 different US cities.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

In this short, hands-on activity, students build simple molecular models of 4 atmospheric gases (O2, N2, C02, and methane), compare their resonant frequencies, and make the connection between resonant frequency and the gas's ability to absorb infrared radiation.

In this activity, students learn about how climate change is affecting the Arctic ecosystem and then investigate how this change is impacting polar bear populations. Students analyze maps of Arctic sea ice, temperature graphs, and polar bear population data to answer questions about the impact of climate change on the Arctic ecosystem.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.