This activity addresses naturally occurring climate change involving ENSO (El-NiÃo Southern Oscillation). In this activity, students play the role of a policy maker in Peru. First, they determine what sort of ENSO variation is occurring. Then, they must decide how to allocate Peru's resources to manage for possible weather-related problems.

In this activity students make biodiesel from waste vegetable oil and develop a presentation based on their lab experience. Parts of the activity include creation of bio-diesel from clean vegetable oil, creation of bio-diesel from waste vegetable oil, chemical analysis of biodiesel, purification of biodiesel, and creation of soap from glycerin.

This multi-part activity introduces users to normal seasonal sea surface temperature (SST) variation as well as extreme variation, as in the case of El NiÃo and La NiÃa events, in the equatorial Pacific Ocean. Via a THREDDS server, users learn how to download seasonal SST data for the years 1982 to 1998. Using a geographic information system (GIS), they visualize and analyze that data, looking for the tell-tale SST signature of El Nino and La Nina events that occurred during that time period. At the end, students analyze a season of their own choosing to determine if an El NiÃo or La NiÃa SST pattern emerged in that year's data.

A simple click-through animation from Scripps Institute's Earthguide program breaks the complex topic of the global energy balance into separate concepts. Slides describe the different pathways for incoming and outgoing radiation.

This activity uses geophysical and geochemical data to determine climate in Central America during the recent past and to explore the link between climate (wet periods and drought) and population growth/demise among the Maya. Students use ocean drilling data to interpret climate and to consider the influence of climate on the Mayan civilization.

Activity in which students investigate what causes the seasons by doing a series of kinesthetic modeling activities and readings. Activity includes educator background information about how to address common misconceptions about the seasons with students.

In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

In this interactive, students explore, at their own pace, how global climate change may affect health issues. Issues include airborne diseases, developmental disorders, mental health disorders, vector-borne diseases and waterborne diseases.

This video examines how scientists learn about the effects of climate change on the water cycle and what those effects might mean for our planet.

In this activity, students learn about the energy sources used by their local utility provider to generate electricity, and work in small groups to evaluate the sustainability of either a renewable or non-renewable energy source used to generate electricity.