This is a lab about evidence for past climate change as captured in ice sheets of Greenland and Antarctica. Students investigate climate changes going back thousands of years by graphing and analyzing ice core data from both Greenland and Antarctica. They use information about natural and human-caused changes in the atmosphere to formulate predictions about Earth's climate.

In this activity, students learn about the relationship between greenhouse gases and global warming through a simple teacher demo or hands-on lab activity. Everyday materials are used: beakers, baking soda, vinegar, candle, thermometers, heat source such as a goose-necked lamp, etc. Students shine a light onto three thermometers: a control, an upside down beaker w/ a thermometer and air, and a beaker in which CO2 had been poured.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options: 1) Business As Usual, 2) March 2009 Country Proposals, 3) Flatten CO2 emissions by 2025, 4) 29% below 2009 levels by 2040, 5) 80% reduction of global fossil fuel plus a 90% reduction in land use emissions by 2050, and 6) 95 reduction of CO2 emissions by 2020). Based on the more complex C-ROADS simulator.

In this exercise learners use statistics (T-test using Excel) to analyze an authentic dataset from Lake Mendota in Madison, WI that spans the last 150 years to explore ice on/ice off dates. In addition, students are asked to investigate the IPCC Likelihood Scale and apply it to their statistical results.

This activity teaches students about the albedo of surfaces and how it relates to the ice-albedo feedback effect. During an experiment, students observe the albedo of two different colored surfaces by measuring the temperature change of a white and black surface under a lamp.

This lesson covers different aspects of the major greenhouse gases - water vapor, carbon dioxide, methane, nitrous oxides and CFCs - including some of the ways in which human activities are affecting the atmospheric concentrations of these key greenhouse gases. This is lesson six in a nine-lesson module about climate change.

This short video reviews how nations and individuals on Earth can work together to reduce the emission of CO2. It discusses strategies to reduce greenhouse gas emissions (energy conservation, renewable energies, change in energy use) and the role that government can play in this process.

This activity focuses on applying analytic tools such as pie charts and bar graphs to gain a better understanding of practical energy use issues. Also provides experience with how different types of data collected affect the outcome of statistical visualization tools.

This activity introduces students to global climate patterns by having each student collect information about the climate in a particular region of the globe. After collecting information, students share data through posters in class and consider factors that lead to differences in climate in different parts of the world. Finally, students synthesize the information to see how climate varies around the world.

This introductory video covers the basic facts about how to keep residential and commercial roofs cool and why it is important to reducing the heat island effect and conserving energy.