This video profiles the Arctic Inuit community of Sachs Harbour and its collaboration with scientists studying climate change. Changes in the land, sea, and animals are readily apparent to the residents of Sachs Harbourâmany of whom hunt, trap, and fishâbecause of their long-standing and intimate connection with their ecosystem. Scientists from a climate change study project interview the residents and record their observations. The scientists can use these firsthand accounts along with their own collected data to deepen their understanding of climate change in the polar region.

This short video makes the case that rapid climate change affects the whole planet, but individuals can make a difference and make their carbon footprint smaller. Common suggestions are identified for young children to consciously consider what they can do.

In this 3-part lab activity, students investigate how carbon moves through the global carbon cycle and study the effects of specific feedback loops on the carbon cycle.

Citizen scientist Anya, an indigenous Siberian girl, witnesses the changes in her community as a result of climate change after working with Woods Hole scientist Max Holmes' research team aboard her father's ship. She gets involved in collecting water samples to learn, and teach her schoolmates about, global warming.

A short video on the causes of ocean acidification and its effects on marine ecosystems.

Students go through the design process and the scientific method to test the effect of blade design on power output. There is an optional extension to use the data to create an optimal set of wind turbine blades.

This is a series of 5 guided-inquiry activities that examine data and models that climate scientists use to attempt to answer the question of Earth's future climate.

In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.

This in-depth interactive slideshow about how climate models work is embedded with a lot of background information. It also describes some of the projected climate change impacts to key sectors such as water, ecosystems, food, coasts, health. (scroll down page for interactive)

This classroom activity is aimed at an understanding of different ecosystems by understanding the influence of temperature and precipitation. Students correlate graphs of vegetation vigor with those of temperature and precipitation data for four diverse ecosystems, ranging from near-equatorial to polar, and spanning both hemispheres to determine which climatic factor is limiting growth.