In this activity, students explore real data about renewable energy potential in their state using a mapping tool developed by NREL (National Renewable Energy Laboratory) to investigate the best locations for wind energy, solar energy, hydropower, geothermal energy, and biomass.

This collection of photos from the NASA Climate website features images of global change, such as floods, wildfires, and retreating glaciers. Not all images show change caused directly by climate change and energy use, and descriptive captions indicate causes for change in most of the images.

This video segment from What's Up in the Environment shares how an entire home can be constructed using green energy sources (solar and geothermal energy). Video is narrated by young boy whose father is the chief engineer on the project.

This three-part, hands-on investigation explores how sunlight's angle of incidence at Earth's surface impacts the amount of solar radiation received in a given area. The activity is supported by PowerPoint slides and background information.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

This short video, the sixth in the National Academies Climate Change, Lines of Evidence series, explores the hypothesis that changes in solar energy output may be responsible for observed global surface temperature rise. Several lines of evidence, such as direct satellite observations, are reviewed.

This video, along with a background essay, focuses on impacts of climate change on the lives of Native Alaskans around Barrow, Alaska. Specific changes include the timing of the changes in the formation and breakout of sea ice and the impacts on subsistence living.

This resource is a website that is a self-contained, multi-part introduction to how climate models work. The materials include videos and animations about understanding, constructing and applying climate models.

This short video discusses where carbon dioxide, the gas that is mainly responsible for warming up our planet and changing the climate, comes from. It discusses how the rise in atmospheric carbon dioxide comes directly from the burning of fossil fuels and indirectly from the human need for energy.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

Pages