This is an interactive map that illustrates the scale of potential flooding in Alabama, Mississippi, and Florida due to projected sea level rise. It is a collaborative project of NOAA Sea Grant Consortium and U.S.G.S. It is a pilot project, so there is some possibility that the resource may not be maintained over time.

This video and accompanying essay review the impacts of rising surface air temperatures and thawing permafrost on ecosystems, geology, and native populations in Alaska.

The video offers a simple and easy-to-understand overview of climate change. It poses basic questions such as 'What is it?' and 'How will it effect us?' and effectively answers those questions.

This video examines what will happen to crops as Earth's temperature rises and soils dry out because of changing climate. Students learn that a loss of soil moisture causes stress to plants, leading to crop withering. Since humans and animals depend directly or indirectly on plants for food, many societal problems can be expected to arise due to the impact of climate warming on crops and the societies that depend on them.
Note: you may need to scroll down the Changing Planet video page to get to this video.

In this jigsaw activity, students explore meteorological data collected from Eureka, Canada to try to decide when would be the best time for an Arctic visit.

These slide sets (one for the Eastern US and one for the Western US) describe how citizen observations can document the impact of climate change on plants and animals. They introduce the topic of phenology and data collection, the impact of climate change on phenology, and how individuals can become citizen scientists.

This multi-part activity introduces users to normal seasonal sea surface temperature (SST) variation as well as extreme variation, as in the case of El NiÃo and La NiÃa events, in the equatorial Pacific Ocean. Via a THREDDS server, users learn how to download seasonal SST data for the years 1982 to 1998. Using a geographic information system (GIS), they visualize and analyze that data, looking for the tell-tale SST signature of El Nino and La Nina events that occurred during that time period. At the end, students analyze a season of their own choosing to determine if an El NiÃo or La NiÃa SST pattern emerged in that year's data.

Students explore how various energy sources can be used to cause a turbine to rotate and then generate electricity with a magnet.

In this activity, students use NASA satellite data to explore the seasonal changes in sea surface temperatures of the Gulf Stream. Students use NASA's Live Active Server (LAS) to generate data of sea surface temperatures in the Gulf Stream, which they then graph and analyze.

This animated visualization of precession, eccentricity, and obliquity is simple and straightforward, provides text explanations, and is a good starting place for those new to Milankovitch cycles.

Pages