This video describes the work of scientists who are studying the precise combination of trees that would be most effective in reducing the level of greenhouse gases in the air around Syracuse, NY. This is a pilot study that will serve as a model for other urban areas.

This is an animated interactive simulation that illustrates differential solar heating on a surface in full sunlight versus in the shade.

Two simple experiments/demonstrations show the role of plants in mitigating the acidification caused when CO2 is dissolved in water.

This short animation helps demonstrate the difference between climate and weather by using the analogy of a leashed dog walking with a man.

This activity from the Department of Energy provides background information about solar ovens and instructions on building a simple model solar cooker.

This short video from Climate Central explains the technology used to monitor changes in Arctic sea ice. Long-term tracking (since the late 1970's) shows Arctic sea ice has been on a steady decline and this could have significant implications for global temperatures.

Students perform a lab to explore how the color of materials at the Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark colored materials become hotter.

This is a teaching activity in which students learn about the connection between CO2 emissionS, CO2 concentration, and average global temperatures. Through a simple online model, students learn about the relationship between these and learn about climate modeling while predicting temperature change over the 21st century.

This video features residents of Shishmaref, Alaska, plus environmental journalist Elizabeth Kolbert and scientist John Holdren, exploring the human impacts of global climate change. The roles of teachers, scientists, policymakers, and concerned citizens in mitigating the changes are highlighted.

In this activity, students calculate temperatures during a time in the geologic record when rapid warming occurred using a well known method called 'leaf-margin analysis.' Students determine the percentage of the species that have leaves with smooth edges, as opposed to toothed, or jagged, edges. Facsimiles of fossil leaves from two collection sites are examined, categorized, and the data is plugged into an equation to provide an estimate of paleotemperature for two sites in the Bighorn Basin. It also introduces students to a Smithsonian scientist who worked on the excavation sites and did the analysis.

Pages