This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon reservoirs and the movement of carbon between reservoirs.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

This video is narrated by climate scientist Richard Alley. It examines studies US Air Force conducted over 50 years ago on the warming effects of CO2 in the atmosphere and how that could impact missile warfare. The video then focuses on the Franz Josef glacier in New Zealand; the glacier is used to demonstrate a glacier's formation, depth of snow fall in the past, and understand atmospheric gases and composition during the last Ice Age. Supplemental resources are available through the website.

In this video from the Polaris Project Website, American and Siberian university students describe their research on permafrost.

This visualization focuses on public acceptance of climate science. The set of interactive maps illustrates public opinion on a variety of climate beliefs, risk perceptions, and policy support. The data is from the Yale Project on Climate Communication.

In this activity, students distinguish between directly and indirectly transmitted diseases and participate in a group game to simulate the spread of vector-borne diseases. They then research a particular pathogenic disease to learn how global warming and biodiversity loss can affect disease transmission.

In this activity, students learn about the energy sources used by their local utility provider to generate electricity, and work in small groups to evaluate the sustainability of either a renewable or non-renewable energy source used to generate electricity.

This video is one of a series of videos from the Switch Energy project. It describes three types of geothermal sources -- rare ones in which high temperatures are naturally concentrated near the surface, deep wells that require fracturing the rock and then circulating water to bring heat to the surface, and low temperature sources that use constant temperatures just below the surface to heat or cool a building. The latter two are more widely available but cost-prohibitive today.

This interactive diagram from the National Academy of Sciences shows how we rely on a variety of primary energy sources (solar, nuclear, hydro, wind, geothermal, natural gas, coal, biomass, oil) to supply energy to four end-use sectors (residential, commercial, industrial, and transportation). It also focuses on lost or degraded energy.

This video provides background information and teaching tips about the history and relevance of phenology and seasonal observations of plants and animals within the context of rural Wisconsin.

Pages