This video illustrates the advantages of woody biomass as a renewable, carbon-neutral energy source. Woody biomass is underutilized and often overlooked as a renewable fuel, and it can be harvested sustainably and burned cleanly.

In this activity, students investigate how sea levels might rise when ice sheets and ice caps melt by constructing a pair of models and seeing the effects of ice melt in two different situations. Students should use their markers to predict the increase of water in each box before the ice melts.

In this activity, students review techniques used by scientists as they analyze a 50-year temperature time series dataset. The exercise helps students understand that data typically has considerable variability from year to year and to predict trends, one needs to consider long-term data.

This is a short experiment to demonstrate the concept of thermal expansion of water when heated, as an analogy to thermal expansion of oceans due to global warming.

A sequence of five short animated videos that explain the properties of carbon in relationship to global warming, narrated by Robert Krulwich from NPR.

Students investigate how much greenhouse gas (carbon dioxide and methane) their family releases into the atmosphere each year and relate it to climate change. To address this, students use the Environmental Protection Agency Personal Emissions Calculator to estimate their family's greenhouse gas emissions and to think about how their family could reduce those emissions.

This video segment depicts how climate change is impacting the migration of Canada's barren-ground caribou. Changes in the plant community and tree lines will change the prime habitat for some herds of caribou. Caribou are faced with adapting to these barrens shrinking, often with serious consequences.

This interactive map shows the impact of a changing climate on maple syrup sap production. Students can explore the changes in production under two different emissions scenarios.

In this video, a team of paleontologists, paleobotanists, soil scientists, and other researchers take to the field in Wyoming's Bighorn Basin to document how the climate, plants, and animals there changed during the Paleocene- Eocene Thermal Maximum (PETM) when a sudden, enormous influx of carbon flooded the ocean and atmosphere for reasons that are still unclear to scientists. The PTEM is used as an analog to the current warming occurring. The scientists' research may help inform our understanding of current increases in carbon in the atmosphere and ocean and the resulting impact on ecosystems. Supporting materials include essay and interactive overview of animals that existed in the Basin after the PETM event.

This animation depicts real-time wind speed and direction at selected heights above Earth's surface, ocean surface currents, and ocean surface temperatures and anomalies.

Pages