This is a five-activity module that explores the evidence for and impacts of melting glacial ice, with resources from major institutions and scientists who study glaciers -- primarily in Arctic areas. The suite of activities includes both glaciers and melting ice, as well as the impact of melt water downstream. Each activity follows the 5E model of Engagement, Exploration, Explanation, Elaboration, and Evaluation.

In this activity, students act as water molecules and travel through parts of the water cycle (ocean, atmosphere, clouds, glaciers, snow, rivers, lakes, ground, aquifer). Students use a diagram of the hydrologic cycle to draw the pathway they traveled.

This animated visualization of precession, eccentricity, and obliquity is simple and straightforward and provides text explanations. It is a good starting place to show Milankovitch cycles.

This video highlights research conducted at Woods Hole on how heat absorbed by the ocean and changes of ocean chemistry from human activities could lead to a tipping point for marine life and ecosystems. Includes ice bath experiment that models the tipping point of Arctic sea ice.

In this activity, students are guided through graphs of surface air temperature anomaly data and Vostok ice core data to illustrate how scientists use these data to develop the basis for modeling how climate is likely to change in the future.

This interactive provides two scenarios for students to look at issues related to energy and climate change: from the perspective of either a family, or a monarch.

In this video segment, two students discuss the greenhouse effect and visit with research scientists at Biosphere 2 in Arizona, who research the effects of global climate change on organisms in a controlled facility. Their current research (as of 2002) focuses on the response to increased quantities of CO2 in a number of different model ecosystems.

This video is one of a series produced by the Switch Energy project. It reviews the pros and cons of natural gas as a source of energy.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

In this classroom activity, students measure the energy use of various appliances and electronics and calculate how much carbon dioxide (CO2) is released to produce that energy.