This introductory video addresses key points as well as pros and cons of oil as an energy source for transportation.

This short video discusses where carbon dioxide, the gas that is mainly responsible for warming up our planet and changing the climate, comes from. It discusses how the rise in atmospheric carbon dioxide comes directly from the burning of fossil fuels and indirectly from the human need for energy.

This video highlights research conducted at Woods Hole on how heat absorbed by the ocean and changes of ocean chemistry from human activities could lead to a tipping point for marine life and ecosystems. Includes ice bath experiment that models the tipping point of Arctic sea ice.

A set of eight photographs compiled into a series of slides explain how urban areas are facing challenges in keeping both their infrastructure and their residents cool as global temperatures rise. Chicago is tackling that problem with a green design makeover. This report is part of PBS's Coping with Climate Change series and could challenge students to consider engineering designs to help their own cities be greener.

This narrated slideshow describes the impact of sea level rise on Tuvalu, one of the low-lying island nations in the South Pacific. As the frequency and intensity of floods and cyclones increases, the island is shrinking and saltwater intrusion is affecting local food production on the plantations. As a result, many residents are moving off the island to New Zealand, where they face major cultural changes.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

This video describes how Colorado has planned for and uses clean energy resources to reduce its carbon footprint.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

In this activity, students learn about sea ice extent in both polar regions (Arctic and Antarctic). They start out by forming a hypothesis on the variability of sea ice, testing the hypothesis by graphing real data from a recent 3-year period to learn about seasonal variations and over a 25-year period to learn about longer-term trends, and finish with a discussion of their results and predictions.

This hands-on activity explores the driving forces behind global thermohaline circulation.

Pages