This is a laboratory activity in which students will compare the amount of carbon dioxide in four different sources of gas and determine the carbon dioxide contribution from automobiles. They test ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide from a vinegar/baking soda mixture.

In this activity, students use climate data to develop a simple graph of how climate has changed over time and then present the result in a blog, emphasizing effective science communication.

This interactive graphic outlines the carbon cycle, with clickable text boxes that explain and elaborate each component.

This slideshow lays out a photo story with short descriptions of how designers of city buildings all over the world are taking climate change and rising sea level seriously.

This activity leads students through a sequence of learning steps that highlight the embedded energy that is necessary to produce various types of food. Students start by thinking through the components of a basic meal and are later asked to review the necessary energy to produce different types of protein.

This activity identifies and explains the benefits of and threats to coral reef systems. Students read tutorials, describe the role of satellites, analyze oceanographic data and identify actions that can be undertaken to reduce or eliminate threats to coral reefs. As a culminating activity, students prepare a public education program.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

A collection of repeat photography of glaciers from the National Snow and Ice Data Center (NSIDC). The photos are taken years apart at or near the same location, and at the same time of year. These images illustrate how dramatically glacier positions can change even over a relatively short period in geological time: 60 to 100 years. Background essay and discussion questions are included.

This is an activity designed to allow students who have been exposed to the El NiÃo-Southern Oscillation to analyze the La NiÃa mechanism and predict its outcomes in a case study format.

In this activity, students investigate soil erosion and how a changing climate could influence erosion rates in agricultural areas. This activity is part of a larger InTeGrate module called Growing Concern.

Pages