This video shows some of the most dramatic fluctuations to our cryosphere in recent years, using visuals created with a variety of satellite-based data.

This is an animated interactive that displays, on a Global Viewer, NOAA datasets on hazards, ocean, and climate. User can visualize data on phenomena such as hurricanes, humpback whale migrations, carbon tracker, sea ice extent, IPCC scenarios on global warming.

As a segment in PBS's Coping with Climate Change series, Hari Sreenivasan reports on the actions the city of Chicago is taking to mitigate climate change in an urban landscape.

In this activity, students chart temperature changes over time in Antarctica's paleoclimate history by reading rock cores. Students use their data to create an interactive display illustrating how Antarctica's climate timeline can be interpreted from ANDRILL rock cores.

Students explore how various energy sources can be used to cause a turbine to rotate and then generate electricity with a magnet.

This audio slideshow/video describes the Greenland ice sheet and the difficulties in getting scientific measurements at the interface between the ice and the ocean. It features the work of a researcher from Woods Hole Oceanographic Institute researcher. She gives a personal account of her work on the recent increase in melting of glaciers, the challenges of working in Greenland, and the reasons why so many climate scientists are looking there for answers to questions about climate change.

This music video features a rap song about some of the causes and effects of climate change with the goal of increasing awareness of climate change and how it will impact nature and humans. The website also includes links to short fact sheets with lyrics to the song that are annotated with the sources of the information in the lyrics.

This interactive follows carbon as it moves through various components of the carbon cycle.

This hands-on activity is a kinesthetic game illustrating the dynamics of the carbon cycle. Acting as carbon atoms, students travel from one carbon reservoir to another; at each reservoir they determine, by rolling dice, how long they stay in the reservoir or how likely it is that they will move to another carbon reservoir.

This map shows the pattern of thermohaline circulation. This collection of currents is responsible for the large-scale exchange of water masses in the ocean, including providing oxygen to the deep ocean. The entire circulation pattern takes ~2000 years.

Pages