This visualization shows in five steps how ice cores provide a measure of the temperature in the past.

In this activity, students engage in a simulation of the international negotiation process in order to convey how the international community is responding to climate change. Participants learn firsthand about the interests of different countries and the range of policy responses to mitigate future climate change.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

C-Learn is a simplified version of the C-ROADS simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This animation allows students to explore the infrared spectra of greenhouse gases and depict the absorption spectra. Vibrational modes and Earth's energy spectrum can also be overlaid.

The purpose of this activity is to identify global patterns and connections in environmental data contained in the GLOBE Earth Systems Poster, to connect observations made within the Earth Systems Poster to data and information at the National Snow and Ice Data Center, and to understand the connections between solar energy and changes at the poles, including feedback related to albedo.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

An applet about the Milankovitch cycle that relates temperature over the last 400,000 years to changes in the eccentricity, precession, and orbital tilt of Earth's orbit.

Pages