This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

Sankey (or Spaghetti) diagrams parse out the energy flow by state, based on 2008 data from the Dept. of Energy. These diagrams can help bring a local perspective to energy consumption. The estimates include rejected or lost energy but don't necessarily include losses at the ultimate user end that are due to lack of insulation.

This activity explores how the topic of climate change is represented in various forms of writing, from scholarly articles to opinion pieces and works of fiction. While the content does not emphasize climate science itself, it instead allows students to focus on how the science is being portrayed.

This straightforward calculator provides conversions from one unit of energy to the equivalent amount of CO2 emission expected from using that amount.

This is the ninth and final lesson in a series of lessons about climate change. This lesson focuses on the various activities that humans can do to mitigate the effects of climate change. This includes information on current and predicted CO2 emission scenarios across the globe, alternative energy sources, and how people are currently responding to climate change. Importantly, this lesson is motivating in showing students that they can make a difference.

This suite of short video clips is part of a series produced by the Switch Energy project. There are several video segments that discuss different perspectives of biofuels as a renewable source of energy.

In this activity, students use Google Earth and information from several websites to investigate some of the consequences of climate change in polar regions, including the shrinking of the ice cap at the North Pole, disintegration of ice shelves, melting of Greenland, opening of shipping routes, effects on polar bears, and possible secondary effects on climate in other regions due to changes in ocean currents. Students learn to use satellite and aerial imagery, maps, graphs, and statistics to interpret trends accompanying changes in the Earth system.

This interactive lets students determine the extent of average temperature change both in their community and anywhere else in the world, relative to average temperatures for the three decades between 1951 and 1980.

C-Learn is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This series of visualizations show the annual Arctic sea ice minimum from 1979 to 2015. The decrease in Arctic sea ice over time is shown in an animation and a graph plotted simultaneously, but can be parsed so that the change in sea ice area can be shown without the graph.

Pages