In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

In this activity, students assume the role of a team of architects that has been commissioned to build a solar house containing both active and passive solar components. First, they must design the house and then build a model. The model is tested to determine how well it utilizes solar energy.

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

This video from a 2005 NOVA program features scientists who study the Jakobshavn Isbrae glacier in western Greenland. The glacier is shrinking and moving faster due to increased melting in recent years. The video includes footage of scientists in the field explaining methods and animation of ice sheet dynamics leading to faster glacier movement.

This is a jigsaw activity in which students are assigned to research one step out of five in the geochemical process stages of the organic carbon cycle. Students then teach their step in cross-step groups until everyone understands all five process stages.

In this activity, students compare countries and nation states with high- and low-energy consumption rates within a specific region of the world. Students are encouraged to draw linkages between a country's energy culture and its position in multilateral climate negotiations.

This activity focuses on applying analytic tools such as pie charts and bar graphs to gain a better understanding of practical energy use issues. It also provides experience with how different types of data collected affect the outcome of statistical visualization tools.

This animation depicts global surface warming as simulated by NCAR's Community Climate System Model (CCSM) Version 3. It shows the temperature anomalies relative to the end of the 19th century, both over the entire globe and as a global average. The model shows the temporary cooling effects during 5 major volcanic eruptions and estimates future temperature trends based on different amounts of greenhouse gas emissions.

This activity includes an assessment, analysis, and action tool that can be used by classrooms to promote understanding of how the complex current issues of energy, pollution, supply, and consumption are not just global but also local issues.

This video features the Prairie Heating and CO2 Enrichment Experiment near Cheyenne WY, where scientists expose mixed-grass prairie to higher temperatures and CO2 concentrations to study impacts on the prairie for late in this century.