Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

The heart of this activity is a laboratory investigation that models the production of silicon. Students learn about silicon and its sources, uses, properties, importance in the fields of photovoltaics (solar cells/renewable energy) and integrated circuits industries, and, to a limited extent, environmental impact of silicon production.

This video provides background information and teaching tips about the history and relevance of phenology and seasonal observations of plants and animals within the context of rural Wisconsin.

In this video, scientist Dr. Susan Prichard discusses the impact of pine bark beetles on western forests. She explains how climate change, specifically rising temperatures, is exacerbating the problem.

This visualization shows in five steps how ice cores provide a measure of the temperature in the past.

This video shows where and how ice cores are extracted from the West Antarctic Ice Sheet. The cores are cut, packaged, flown to the ice core storage facility in Denver, further sliced into samples, and shipped to labs all over the world where scientists use them to study indicators of climate change from the past.

This animation illustrates how heat energy from deep in Earth can be utilized to generate electricity at a large scale.

In this lab activity students generate their own biomass gases by heating wood pellets or wood splints in a test tube. They collect the resulting gases and use the gas to roast a marshmallow. Students also evaluate which biomass fuel is the best by their own criteria or by examining the volume of gas produced by each type of fuel.

This PBS video focuses on sea level rise in Norfolk, Virginia and how the residents are managing the logistical, financial and political implications. Science journalists who have been studying Norfolk's rising sea level problems are interviewed, as well as local residents who are being impacted.

This interactive lets students determine the extent of average temperature change both in their community and anywhere else in the world, relative to average temperatures for the three decades between 1951 and 1980.

Pages