This video features Dr. Gary Griggs, scientist with the National Research Council (NRC) and professor at UCSC, reviewing highlights from the recently released report by the NRC about predictions for sea-level rise on the West Coast states. The video includes effective visualizations and animations of the effects of plate tectonics and sea-level rise on the West Coast.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

This qualitative graphic illustrates the various factors that affect the amount of solar radiation hitting or being absorbed by Earth's surface such as aerosols, clouds, and albedo.

A video that discusses the perspectives and insights necessary to report out about climate change. The video can be used to demonstrate how different perspectives impact different stakeholders and different levels, and that there is a need to have a clear, coordinated national response.

In this video, students explore the work of Jay Keasling, a synthetic biologist experimenting with ways to produce a cleaner-burning fuel from biological matter, using genetically modified microorganisms.

In this experiment, students investigate the importance of carbon dioxide to the reproductive growth of a marine microalga, Dunalliela sp. (Note that the directions are for teachers and that students protocol sheets will need to be created by teachers.)

This static visualization shows that the global carbon cycle is determined by the interactions of climate, the environment, and Earth's living systems at many levels, from molecular to global.

A simple three-part diagram from UNEP GRID Vital Water Graphics showing what the impact of global warming will be on projected coastlines and populated areas of Bangladesh with a 1 and 1.5 m sea level rise relative to the current coastline.

In this activity, students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This video is simple in its appearance, but it contains a wealth of relevant information about global climate models.

Pages