This is a graph of marine air temperature anomalies over the past 150 years. Five different marine air temperature anomaly datasets from different sources are compared on the one graph.

This set of animations and interactive simulations from the Byrd Polar Research Center at Ohio State University helps students develop an understanding of models used to understand the Earth System. Students consider the types of data that need to be included in a climate model, looking at inputs and outputs as well as variables, such as land surface, and how to measure changes of different parts of Earth's surface over time.

In this lab activity students generate their own biomass gases by heating wood pellets or wood splints in a test tube. They collect the resulting gases and use the gas to roast a marshmallow. Students also evaluate which biomass fuel is the best by their own criteria or by examining the volume of gas produced by each type of fuel.

In this activity, students use Google Earth to investigate a variety of renewable energy sources and select sites within the United States that would be appropriate for projects based on those sources.

A video from the Extreme Ice Survey in which Dr. Tad Pfeffer and photographer Jim Balog discuss the dynamics of the Columbia glacier's retreat in recent years through this time-lapse movie. Key point: glacier size is being reduced not just by glacial melting but due to a shift in glacial dynamics brought on by climate change.

This video segment, adapted from Need to Know, discusses how the process of hydraulic fracturing (fracking) is used to extract natural gas and how the process may be polluting water resources with hazardous chemicals, leading to health concerns.

This graph, based on key ice core data sets and recent monitoring programs, shows the variations in concentration of carbon dioxide (CO2) in the atmosphere during the last 400,000 years.

In this activity, students create graphs of real temperature data to analyze climate trends by analyzing the global temperature record from 1867 to the present. Long-term trends and shorter-term fluctuations are both evaluated. The data is examined for evidence of the impact of natural and anthropogenic climate forcing mechanisms on the global surface temperature variability. Students are prompted to determine the difficulties scientists face in using this data to make climate predictions.

This NASA animation of the Five-Year Average Global Temperature Anomalies from 1881 to 2009 shows how temperature anomalies have varied in the last 130 years. The color-coded map displays a long-term progression of changing global surface temperatures from 1881 to 2009. Dark red indicates the greatest warming and dark blue indicates the greatest cooling.

A short video on the causes of ocean acidification and its effects on marine ecosystems.