This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

This video segment, adapted from Need to Know, discusses how the process of hydraulic fracturing (fracking) is used to extract natural gas and how the process may be polluting water resources with hazardous chemicals, leading to health concerns.

This video describes how Colorado has planned for and uses clean energy resources to reduce its carbon footprint.

This video provides an overview of how computer models work. It explains the process of data assimilation, which is necessary to ensure that models are tied to reality. The video includes a discussion of weather models using the Goddard Earth Observing System (GEOS-5) model and climate models using the MERRA (Modern Era Retrospective Analysis for Research and Applications) technique.

This video presents predictions and solutions for range shifts (wildlife corridors) by an iconic species of North American wilderness: the wolverine.

This flow chart shows the sources and activities across the U.S. economy that produce greenhouse gas emissions.

In this activity, students will learn the difference between sea ice and glaciers in relation to sea level rise. They will create and explore topographic maps as a means of studying sea level rise and how it will affect Alaska's coastline.

This narrated animation displays three separate graphs of carbon emissions by humans, atmospheric concentrations of CO2, and average global temperature as it has changed over the last 1000 years. The final slide overlays the three graphs to show how they all correspond.

This activity engages learners in examining data pertaining to the disappearing glaciers in Glacier National Park. After calculating percentage change of the number of glaciers from 1850 (150) to 1968 (50) and 2009 (26), students move on to the main glacier-monitoring content of the module--area vs. time data for the Grinnell Glacier, one of 26 glaciers that remain in the park. Using a second-order polynomial (quadratic function) fitted to the data, they extrapolate to estimate when there will be no Grinnell Glacier remaining (illustrating the relevance of the question mark in the title of the module).

This video reviews key points as well as pros and cons of nuclear power.

Pages