This 3-activity sequence addresses the question: "To what extent should coastal communities build or rebuild?" The activity uses social science and geoscience data to prepare an evidence-based response to the question, in targeted US coastal communities.

This activity from NOAA Earth System Research Laboratory introduces students to the scientific understanding of the greenhouse effect and the carbon cycle. The activity leads them through several interactive tasks to investigate recent trends in atmospheric carbon dioxide. Students analyze scientific data and use scientific reasoning to determine the causes responsible for these recent trends. By studying carbon cycle science in a visual and interactive manner, students can learn firsthand about the reasons behind our changing climate.

This visualization shows in five steps how ice cores provide a measure of the temperature in the past.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This hands-on activity introduces students to the process of fermenting different carbohydrate sources into ethanol. Teachers demonstrate yeasts' inability to metabolize certain food sources.

Sankey (or Spaghetti) diagrams parse out the energy flow by state, based on 2008 data from the Dept. of Energy. These diagrams can help bring a local perspective to energy consumption. The estimates include rejected or lost energy but don't necessarily include losses at the ultimate user end that are due to lack of insulation.

This is a photo essay linked to a New York Times story about climate-related stressors on forests -- including mountain pine beetles, forest fires, forest clearance, and ice storms -- and the importance of protecting forests as an important carbon sink.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

In this JAVA-based interactive modeling activity, students are introduced to the concepts of mass balance, flow rates, and equilibrium using a simple water bucket model. Students can vary flow rate into the bucket, initial water level in the bucket, and residence time of water in the bucket. After running the model, the bucket's water level as a function of time is presented graphically and in tabular form.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

Pages