This visualization includes a series of flow charts showing the relative size of primary energy resources and end uses in the United States for the years 2008-2012.

A short video on how changing climate is impacting the ecosystem and thereby impacting traditional lifestyles of the Athabaskan people of Alaska.

These graphs show carbon dioxide measurements at the Mauna Loa Observatory, Hawaii. The graphs display recent measurements as well as historical long term measurements. The related website summarizes in graphs the recent monthly CO2, the full CO2 Record, the annual Mean CO2 Growth Rate, and gives links to detailed CO2 data for this location, which is one of the most important CO2 tracking sites in the world.

This animation shows the Arctic sea ice September (minimum) extents from 1979-2014.

This video illustrates how one community developed and implemented a sustainable solution to help keep stream water cool enough for healthy fish. Their solution has the added benefit of removing CO2 from the atmosphere.

This NASA animation depicts thermohaline circulation in the ocean and how it relates to salinity and water density. It illustrates the sinking of water in the cold, dense ocean near Iceland and Greenland. The surface of the ocean then fades away and the animation pulls back to show the global thermohaline circulation system.

This video segment, adapted from NOVA scienceNOW, addresses how new technology can help monitor and modernize the infrastructure of the U.S. power grid, which is ill-equipped to handle our increasing demand for electricity. Video provides a great overview of how electricity is generated and how the grid works.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This interactive visualization provides a clear, well-documented snapshot of current and projected values of several climate variables for local areas in California. The climate variables include observed and projected temperatures, projected snowpack, areas vulnerable to flooding due to sea level rise, and projected increase in wildfires. The projected values come from expert sources and well-established climate models.

In this activity, students assume the role of a team of architects that has been commissioned to build a solar house containing both active and passive solar components. First, they must design the house and then build a model. The model is tested to determine how well it utilizes solar energy.