In this 3-part lab activity, students investigate how carbon moves through the global carbon cycle and study the effects of specific feedback loops on the carbon cycle.

This video from a 2005 NOVA program features scientists who study how the Jakobshavn Isbrae glacier in western Greenland is shrinking and moving faster due to increased melting over the past ten years. The video includes footage of scientists in the field explaining methods and animation of ice sheet dynamics leading to faster glacier movement.

This is an animated interactive simulation that illustrates differential solar heating on a surface in full sunlight versus in the shade.

This introductory video summarizes the process of generating solar electricity from photovoltaic and concentrating (thermal) solar power technologies.

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

A video that discusses the perspectives and insights necessary to report out about climate change. The video can be used to demonstrate how different perspectives impact different stakeholders and different levels, and that there is a need to have a clear, coordinated national response.

These flow charts show carbon dioxide emissions for each state, the District of Columbia and the entire United States. Emissions are distinguished by energy source and end use.

Bell Telephone Science Hour produced this video in 1958, explaining how the production of CO2 from factories and automobiles is causing the atmosphere to warm, melting the polar ice caps, and causing the sea level to rise.

This is a hands-on inquiry activity using zip-lock plastic bags that allows students to observe the process of fermentation and the challenge of producing ethanol from cellulosic sources. Students are asked to predict outcomes and check their observations with their predictions. Teachers can easily adapt to materials and specific classroom issues.

In this activity, students create graphs of real temperature data to analyze climate trends by analyzing the global temperature record from 1867 to the present. Long-term trends and shorter-term fluctuations are both evaluated. The data is examined for evidence of the impact of natural and anthropogenic climate forcing mechanisms on the global surface temperature variability. Students are prompted to determine the difficulties scientists face in using this data to make climate predictions.