This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This animation depicts global surface warming as simulated by NCAR's Community Climate System Model (CCSM) Version 3. It shows the temperature anomalies relative to the end of the 19th century (1870-1899), both over the entire globe and as a global average. The model shows the temporary cooling effects during the 5 major volcanic eruptions of this time period, and then the model's estimates of warming under the different scenarios taken from the fourth IPCC report.

In this video, scientist Dr. Susan Prichard discusses the impact of pine bark beetles on western forests, including information on how climate change, specifically rising temperatures, is exacerbating the problem.

Interactive visualization that provides a basic overview of the Earth's carbon reservoirs and amount of carbon stored in each, CO2 transport among atmosphere, hydrosphere, geosphere, and biosphere, and a graph comparing global temp (deg C) and atmospheric CO2 levels (ppm) over the past 1000 years.

This web page from the National Snow and Ice Data Center contains two related visualizations. The first visualization gives an estimate of the percent contribution to sea level change since the 1990s from three contributors - small glaciers and ice caps, the Greenland Ice Sheet and the Antarctic Ice Sheet. The second visualization shows the cumulative contribution to sea level from small glaciers and ice caps plotted with the annual global surface air temperature anomaly.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This activity from NOAA Earth System Research Laboratory introduces students to the current scientific understanding of the greenhouse effect and the carbon cycle. The activity leads them through several interactive tasks investigating recent trends in atmospheric carbon dioxide. Students analyze scientific data and use scientific reasoning to determine the causes responsible for these recent trends. By studying carbon cycle science in a visual and interactive manner, the activity provides students with a conceptual framework with which to address the challenges of a changing climate.

This visualization shows the molecular interaction of infrared radiation with various gases in the atmosphere. Focus is on the interaction with C02 molecules and resultant warming of the troposphere.

In this role-playing activity, learners are presented with a scenario in which they determine whether the Gulf Stream is responsible for keeping northern Europe warm. They must also address the potential future of the Gulf Stream if polar ice were to continue melting. The students work in small groups to identify the issue, discuss the problem, and develop a problem statement. They are then asked what they need to know to solve the problem.