In this short video, host Dr. Ryan interviews graduate student Amy Steiker at the Institute of Arctic and Alpine Research about her research, using isotopes of nitrous oxide, connecting human activity to greenhouse gas emissions.

This video production is a part of a four-panel report from the National Academies' America's Climate Choices project. The video maps out the realm of our accumulated knowledge regarding climate change and charts a path forward, urging that research on climate change enter a new era focused on the needs of decision makers.

This video segment, adapted from Need to Know, discusses how the process of hydraulic fracturing (fracking) is used to extract natural gas and how the process may be polluting water resources with hazardous chemicals, leading to health concerns.

This NASA video reviews the role of the sun in driving the climate system. It uses colorful animations to illustrate Earth's energy balance and how increased greenhouse gases are creating an imbalance in the energy budget, leading to warming. The video also reviews how the NASA satellite program collects data on the sun.

This visualization is a collection of maps, by continent, that project the impact on coastlines of a 216-foot rise in sea level, which is assumed to be the result of melting all the land ice on Earth.

This image depicts a representative subset of the atmospheric processes related to aerosol lifecycles, cloud lifecycles, and aerosol-cloud-precipitation interactions that must be understood to improve future climate predictions.

Students use real satellite data to determine 1) where the greatest concentrations of aerosols are located during the course of a year in the tropical Atlantic region and 2) their source of origin. This is an inquiry-style lesson where students pull real aerosol data and attempt to identify trends among data sets.

In this short video from ClimateCentral, host Jessica Harrop explains what evidence scientists have for claiming that recent global warming is caused by humans and is not just part of a natural cycle.

Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

In this activity, students use climate data to develop a simple graph of how climate has changed over time and then present the result in a blog, emphasizing effective science communication.

Pages