This activity supports educators in the use of the activities that accompany the GLOBE Program's Earth System Poster 'Exploring Connections in Year 2007'. Students identify global patterns and connections in environmental data that include soil moisture, insolation, surface temperature, cloud fraction, precipitation, world topography/bathymetry, aerosol optical thickness, and biosphere (from different times of the year) with the goal of recognizing patterns and trends in global data sets.

In this activity, students become familiar with the online Renewable Energy Living Lab interface and access its real-world solar energy data to evaluate the potential for solar generation in various U.S. locations.

In this video, students learn that scientific evidence strongly suggests that different regions on Earth do not respond equally to increased temperatures. Ice-covered regions appear to be particularly sensitive to even small changes in global temperature. This video segment adapted from NASA's Goddard Space Flight Center details how global warming may already be responsible for a significant reduction in glacial ice, which may in turn have significant consequences for the planet.

The purpose of this activity is to identify global patterns and connections in environmental data contained in the GLOBE Earth Systems Poster, to connect observations made within the Earth Systems Poster to data and information at the National Snow and Ice Data Center, and to understand the connections between solar energy and changes at the poles, including feedback related to albedo.

This is a basic animation/simulation with background information about the greenhouse effect by DAMOCLES. The animation has several layers to it that allow users to drill into more detail about the natural greenhouse effect and different aspects of it, including volcanic aerosols and human impacts from burning fossil fuels.

This activity engages students in the analysis of climate data to first find areas in the southern United States that are now close to having conditions in which the malaria parasite and its mosquito hosts thrive and then attempt to forecast when areas might become climatically suitable.

In this activity, students examine climate variability in the North Atlantic associated with the North Atlantic Oscillation (NOA) in a case study format.

This video explains how scientists construct computer-generated climate models to forecast weather, understand climate, and project climate change. It discusses how different types of climate models can be used and how scientists use computers to build these models.

In this video, a spokesperson for the National Climactic Data Center describes the methods of using satellites (originally designed for observing changes in the weather) to study changes in climate from decade to decade. The video clearly illustrates the value of satellite data and begins to address connections between weather and climate.

This video provides background information and teaching tips about the history and relevance of phenology and seasonal observations of plants and animals within the context of rural Wisconsin.

Pages