In this role-playing activity, learners are presented with a scenario in which they determine whether the Gulf Stream is responsible for keeping northern Europe warm. They must also address the potential future of the Gulf Stream if polar ice were to continue melting. The students work in small groups to identify the issue, discuss the problem, and develop a problem statement. They are then asked what they need to know to solve the problem.

Students investigate how much greenhouse gas (carbon dioxide and methane) their family releases into the atmosphere each year and relate it to climate change. To address this, students use the Environmental Protection Agency Personal Emissions Calculator to estimate their family's greenhouse gas emissions and to think about how their family could reduce those emissions.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

This Motions of the Sun Lab is an interactive applet from the University of Nebraska-Lincoln Astronomy Applet project.

In this video, NOAA's Deke Arndt, Chief of the Climate Monitoring Branch at the National Climatic Data Center, recaps the temperature and precipitation data for the continental US in summer 2012. It describes how these conditions have led to drought and reduced crop yields.

In this 3-part lab activity, students investigate how carbon moves through the global carbon cycle and study the effects of specific feedback loops on the carbon cycle.

This detailed animated map shows global weather and climate events from the beginning of 2009 to the present. As the animation plays, specific events are highlighted to provide context and details for the viewer.

In this lab activity students generate their own biomass gases by heating wood pellets or wood splints in a test tube. They collect the resulting gases and use the gas to roast a marshmallow. Students also evaluate which biomass fuel is the best by their own criteria or by examining the volume of gas produced by each type of fuel.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options: 1) Business As Usual, 2) March 2009 Country Proposals, 3) Flatten CO2 emissions by 2025, 4) 29% below 2009 levels by 2040, 5) 80% reduction of global fossil fuel plus a 90% reduction in land use emissions by 2050, and 6) 95 reduction of CO2 emissions by 2020). Based on the more complex C-ROADS simulator.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

Pages